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Abstract: Water flow and solute transport processes in the vadese zone have become a focus of research,
particularly in terms of water guality management, agricultural management and also the prevention of
pollution of groundwater. This paper considers both the vertical and horizontal movement of water in soil, as
described by Richard’s equation. The transport equation is used to describe the movement of a soclute by
water through different soils. Numerical sclutions are obizined for both the water content and also the
concentration of the sohute, using the Method of Lines technique. Special forms of the soil hydravlic
diffusion and chemical diffusion functions are used to provide a closed form analytic solution for the solute
profile in a horizontal flow situation. This analytic solution is used to verify the mumerical method and
estimate the accuracy of the numerical code. Numerical simulations are also carried out for the vertical flow
case for more realistic forms of the soil hydraulic functions. The vertical infiltration of the water and solute
profiles are obtained for two different soils subject to Dirichlet and Neumann conditions at the upper surface.
The resuits show the propagation of the soil water front followed by a more diffuse solute profile into the
soils. The method is readily applicable to the study of salt movement in clays and sandy soiis.
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1. INTROBUCTION have been shown to give very good agrecment
with experimental - data  across & range of

A knowledge and understanding of water flow and .
conditions.

solnte transport processes i the vadose zone is
- becoming --increasingly--imporiant -especially- -
terms of water quality management, the
management of saline soils, and the mitigation of
groundwater pollution. The presence of different
phases (air, water, salt, pollutant and the soil
matrix) result in many different physical and
chemical processes taking place. These processes
are often complex and require simplifying
assumptions to provide achievable and verifiable
simulations in terms of water and solute solution
profiles in the soil. To date, onlty a few analytical
solutions have been found to describe water and

analytical solution to horizontal one-dimensional
coupled tremsient water and solute transport in the
vadose zone. The analytical solution for both the
water and the solute profiles uses specific forms
for the water diffusivity and solute dispersion
functions. Mumerical results are then obtained by
the Method of Lines, and are compared to the
analytical solution to validate the model. Finally,
using more realistic soil hydraulic functions, some
solutions are presented for the 1D vertical flow

solute transport in the vadose zone. There is the configuration.

exact solution of Smiles et al [1978] developed for

horizontal absorption in very fine textured soils 2. GOVERNING PARTIAL
where solute transport by molecular diffusion DIFFERENTIAL EQUATIONS

dominates that due to mechanical dispersion.
There are also the approximate analytical solutions
which include the dependence of flow velocity in
the dispersion coefficient have been given by
Smiles et al. [1981] and Bond [1986]. All these

The combination of water flow and solute
francport processes are governed by a system of
two coupled partial differential equations {PDEs).
Under conditions of isothermal and incompressible
flow, the movement of water is governed by
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This paper offers both a numerical model and an



Richard’s equation. When written in terms of the
volumetric water content 8, it takes the form [Bear,
1979]

a6 d 08 oK
Sl D=L 1

ot az( dz ) 9z (v
where D = IX9), is the hydraulic diffusivity [L'T
1, K = K(8), is the hydraulic conductivity [LT"], z
is a vertical space coordinate [L], and t 15 time [T].
MNote that D = K/C, where C = Cfh) = d9/dh.

The convection-dispersion  eguation in  an
incompressible homogenecus porous medium in
the absence of sink terms, is given by Bear [1979]

de 1{ 9 de dc
&t_%}(Bz(DSe&z) q@z}’ 2
where ¢ is the solute concentration [ML™], g is the
Darcy flux [LT'] = Doz + K and Dg is the
coefficient of dispersion [L’T7']. Note that
q=V8, where V is the velocity of flow in the z
direction, and the Dg is given by

l4]

D,= D, +alV|=D, ros )

with @ (L} being the longitudinal dispersivity and
D is the molecular diffusivity of the solute.

3. NIBAERIC AL METTOD O FINER

4, MODEL YERIFICATION

When they are available, analytical solutions offer
a means of validating a numerical code and
numerical solution. Lee et all [1998] used the
analytical solution from Sander et. &l [1988] two
validate the use of NUMOL in solving soil water
problems. Excellent accuracy was obtained using
the 4“ order finite difference representations of the
spatial derivatives.

4.1  Analytical Solution Based on Brutsaert’s
Profile

An exact solution {0 the horizontal transient flow
of water and solate can be derived using
assumptions about flow conditions and the shepe
of the profiles of both the water content and solute
concentration. This is based on the approach of a
Brutsaert profile [Brutsaert, 1976] for describing
both the water and solute profiles.

Consider the reduced variables defined by:

_ g-8
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where ©; and 8, are the initial and saturated
volumetric water contents, and ¢; and ¢, {¢, > ¢}
are the initial and surface solute concentrations

The NUMOL (MNumerical Method of Lines)
consists of a finite difference discretisation on the
spatial derivatives of ar svolution equation [PDE]
on a discrete set of nodes while the time derivative
is left in a continuous form [Schigsser, 1991], This

transformation--of - the - PDE--leads - to-a--coupled

systern of ordinary differential eguations (ODE)L
An ODE integrator is then used fo integrate the
system to obtain the solution at sach nodal point of
the domain. Lee et al. [1998] have shown that a
template leading fo 2 differentiation matrix can be
used to automate the NUMOL. It has also been
shown that this flexible feroplate can be applied
successully to sets of partial equations in ong, two
or more spatial dimensions. The vector capabilities
of MATLAR [2000], can be used to automate the
template and the NUMOL.

Eguations (1) and (2} were discretised using the
template approach of Lee et al [1998], and a 4"
order finite difference scheme fo represent the
space derivatives. The MATLARB suite of ODE
solvers, particularly ODE4S with relative and
absolute error tolerances of order 107", were used
to integrate the resuliant sets of ODEs.

Tespeciively. Wilh X as the horizontal space
coordinate, {2} can be written in terms of the

reduced variable 8 in the form

In the same way, the solute ransport equation may
be written a8

5o )
: — s )
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where D% = 8D, By introducing the Bolziman

2 [Smiles et al.,, 1978] (5} and (6)
Jt
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Here, & solution to (7) and (8) is sought subject to
the boundary conditions of §=C =1latn=0and
8=C = 0 as n — oo (Table 1). Thus, after
integrating (7) and (8), the water diffusivity and
chemical dispersion coefficient may alsc be
obtained in the form

dné
R du R 10
; -1” (10)

__——de (1

if both § n)and TM) are known. For a constant

D*, Smiles et al [1978] provide a simple exact
solution to (8), using the boundary conditions from

if required, to more accurately match experimental
data. Physically, the only restrictions on N; and 7;
in (12) are that, N, is greater than ong and TN < Ter
For algebraic simplicity only, we take N, = N; and
T = Thee= 1 in {12}, Using (12) and integrating
(10) and (11) gives the following functional forms
for D and Dg*

P _ P
D@)mﬁw(;m : ] (13)

Z N+1
and
2
) I 1Y N N (14
s 8, -8, 2(N+§}(N+z}
and, since D:{@)ZG, then 8i>N8*q In
’ )

sumumary then, for D and DJ* as given by (13) and
{14), the solution of (7) and (8) or (5) and (6) is
given by (12}

Table 1. Initial and boundary conditions,

Variables Reduced

variables
t=0 8=26 = B0 =0
X~ oo G- =G =0 =0
x=0 6=8, C= 8= C=1

The parameter N plays a major 1ole in the accuracy
of the numerical code. Indeed, the higher the value
of N, the stesper the profile for both the water

Table 1, for any n(@) satisfying (7). However, in
the case of a non constant D,*, there does not
appear to be any solution to (8) in the literature. In
this section we provide such a solution to (8) by
following the technique of Brutsaert [1976]. For

_shamp moving water and solute fronts we take the

. profiles [Brutsaert, 1576}
— — 1 My
8 (xy=8m=0-nm,) (12a)

()= =(1-nm, )", (12b)

where 7); is the position for the water front (i = wi)
and solute fromt (i = sf) and N; is a curve fitting
parameter for the water profile (i = w) and solute
profile (i = s). While (12a) has besn successfully
used to match water data [Brutsaert, 1976], (125}
has not been used on sclute data.  Since (12b)
cannot model a tail in the solute profile it is only
suitable for modeling flows where very abrupt
solute fronis occur. However, the aim bhere is only
to have a simple solution which capiures the
general physical features of an advancing solute
profile that is easy to use for checking the
efficiency and accuracy of a numerical solution.
Other functional forms for (1)) could also be used

content and solute concentration proliles which led
to increased difficulties in obtaining accuraie
numerical solutions.

4.2  Aceuracy of the Mumerical Code

The numerical tesults obiained, wusing the

NUMOL, were compared with the analyuc' )
solution, in terms of water content, concentration

and mass conservation by integrating 8 and Be
over the full domain L. For N=2, 3, 4 and 5, good
agreement is found between both the numerical
and analytical solutions for the water and solute
profiles. For a step size of 0.025 over a domain of
fength I = 5, the errors in the results at different x
coordinates are low (3 to 4 significant figures for
N = 2) since neither the wetting or solute front is
100 sharp. Indeed, the accuracy remains acceptable
at 3 significant figures for the much steeper fronts
occurring in both profiles for N =5, The relative
errors in term of water and solute mass balances
are negligible (order of 10, Obviously smaller
step sizes improved these results.
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5.

YERTICAL FLOW AND SCGLUTE
TRANSPORY

5.1 Conditions of Simulation

Numerical solutions are now preseated for the
vertical flow problem defined by (13 and {2), using
NUMOL. We consider two soils, a coarse textured
sotl as used by Inoue et al (2000) (INU) and Yolo
light clay (YL} as given by Fuentes et al. [19921

The Van Genuchten squation [Van Genuchien,
19807

P

-8, :Ii‘*‘ti}

g, -0, [ hg ! ’
’ J

was used for the water retention curve for both
soils, The Brocks and Corey function

K _[(6-8 )
Ks 65_61'} :

was used for the YLC hydraulic conductivity with

(13}

(16)

{see Table 3). Constant initial conditions were
taken for both the water content (or pressure} and
solute concentration.

5.2 Hesulis

Figures la to If show the profiles of water and
solute concentration calculated at various times for
the different soils and boundary conditions listed
in Table 2. For all cases a value of D, = 1.9x107
m’s”! was used while the dispersivity values were
o= 0221 em for INU and o = 0.02cm for YLC.
In Incue et al (2000) peither the water or solute
profiles were given, but insiead the breakthrough
curves for b, 8 and ¢ at z = 23com were provided in
their fig. 6. As a further check on the numerical
solution we compared the breakthrough curves
cbtained at z = 23cm from figs 1a and b with Inoue
et al (2000} and found excellent agreement.

For the IWNU seil, transport by mechanical
dispersicn completely dominates that due to
molecular diffusion. This is shown by the ratio
av/D, being of the order of 100. This is not
surprising where you have a coarse textured soil
with a high conductivity and flow velocity V. By

2
5:;—1;;4—2—:_;; : {7 comparison in the clay soil, YLC, melecular
diffusion is essentially always the dominant
whereas the Mualem [1976] model trapsport process.  Following calculations in
L T, Smiles et al. [1978], D, may be taken independent
K{h) =K 8" 1-(1-68"7)7] ’ (18) of flow velocity for the YLC for infiltration times

1s used for the INU soil

greater than 4 seconds. The other feature apparent
in fig 1, that is also well known in the literature, is

In {15} o (18), K, represenis the saturated
hydrautic conductivity, and hy, 8, £ m, nand p are
shape and scale parameters depending upon the
nature of the soil. The walues used for these

parameters are given in Table 2, with f=-116for .

INUandp= 1.307 for YLC..

Three differerst numerical  simulations  were
conducted, each with a fres drainage condition at
the bottom boundary for water and a zero
concentration gradient for the solute. The water
houndary condition at the upper surface was taken
az either 2 Dirichlet condition with the soil
moisture at the surface held constant, or as a
Neuwmann condition with  the. water flux
prescribed. The surface sohute boundary condition
was either a fixed concentration or a flux condition

the lagging of the solute front behind the water
front due to the piston like displacement of the
mitial water in the soil by the infiltrating water
{Smiles etal, 19781,

The development of an amalytical solution for a
one dimensional horizonial transient flow and
transport problem has provided a way to check the
gfficiency, accuracy, and the robustness of
mumerical models of coupled water and solute
transport. The NWUMOL techmigue is shown to be
an effective tool for modeling coupled water flow
and solute transport in one dimension. The method
has also been applied successfully io coupied
water and solute movement in the wvertical
direction. The results replicate experimental
observations reported in the literature.

Table 2, Values of hydraulic parameters for Y1L.C and INUT soils

[ 8 -h, m 1 ¥,
cm cmb’
YLC (.495 0 1931 00955 2722 0.0443
NG 031 0.0 7.25 0,502 2.01 162
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Figures 1a, b, ¢ and d. Water and solute profiles reached at different infiltration times for INU (la,b} and

YLC (lc,d,e,f} soils as defined in Table 3 for a step size of 0.3cm
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Table 3. Initial and boundary conditions tested for a domain of length L = 30cm; Units are h [em] ;

go [cm/min} and ¢ {mole/l}

Test Soil Initial Boundary conditions
conditions
<z z=1{ g= 1,
1 INU  h=-268 go = 0.155 oh o do
{fig.lab) o =90.02 Co= 0.1 a':f! g;f:i'}
-0, §£+qc =gq,c,
Jz
2 YLC h=-200 h=-10 ah Je
(fig.1c,d) o =0.0002 o= 0.001 ,.5;:@ -&—-Z—me
3o YLC h=-200 q=7x10" h . o
(fig.1e,) e= 0.0002 ¢ =0.001 %= 0 == 0

7. REFEREMNCES

Bear, J. Hydraulics of groundwater. Mc Graw-Hill,
New York, 225-248,1979.

Bond, W.J. Velocity-dependent hydrodynamic
dispersion during vnsicady, unsaturated sotl
water flow: Fxperiments. Water Resourc.
Res. 22: 1881 — 1889, 1986.

Bruisaert, W. The concise formulation of diffusive
sorption of water in a dry soil. Water Resour,
Res. 12: 1118 - 1124, 1976,

Fuentes C., R. Haverlamp and JY. Parlangs,
Parameter constraint? on closed-form soil

Mualem, ¥, A new model for predicting the
hydraulic conductivity of unsaturated porous
media. Water Resourc. Res. 12, 513-5322,
1976,

Sander G. C., Parlange, J. Y., Kuhnel, V., Hogarth,
W. L., Lockington, D.; OFKane, J. Exact
nonlinear  solution  for  constant  flux
infiration. J. Hydrol., 97: 341.346. 1988,

Schiesser, W. E. The numerical method of lines.
Integration of partial differential eguations.
Academic Press, 326p. 1991,

Smiles, D.E.,, KM. Perroux, 5.J. Zegelin and
PALC,  Raats,  Hydrodymamic  dispersion

Waier relaiionsiips, 4. Hydrol.,, 977 341-345,
1992,

Inoue M., J., Simunek., 5. Shiozawa and IW.
Hopmans, Simultansous estimation of soif
hydraulic and soluts transport parameters
from transient infiltration experiments. Adv.

o WY BbOT ReSOUICes, 230677688, 20000

Tee, H., K. Braddock, and . Sander,
Automating  the Method of Lines for
Modeling Moisture Flow in the Unsaturated
Zone, Computational Techniques and
Applications. CTAC-98, ed B.J. Noye, M.D.
Teubner and A, Gill, World Scientific

Publishing Co, 361-368, 1998,

510

during constant rate absorption of water by
soil. Soil Sci. Soc. Am. J. 45: 453 - 458,
1981.

Bmiles, D.E;, LR~ Philip; F.H. Knight and- D.E:
Firick. Hydrodynamic dispersion during

absorption of waier by soil.  Soil Sci. Soc.

AT 4T 709 YA 1OTE

MATLAB guide / Desmond J. Higham, Micholas
i Higham. TPhiladelphia: Society for
Industrial and Applied Mathematics, 2000,

Van Genuchten, Mty A closed form equation for
predicting the hydraulic conductivity of
unsaturated soils, Soil Sci, Soc. Am. 1. 44:
892 — B98, 1980.



